

Somos más que azúcar

AZÚCAR • ENERGÍA • INNOVACIÓN AGRÍCOLA • INMOBILIARIA

IV Congreso Nacional de Técnicos Azucareros

"Innovación y sostenibilidad de la Industria Azucarera"

Quimi- Irrigación y su aplicación en la producción de Caña de Azúcar

Presentado por : Ing. Jairo Vigil Gerente de Tecnología Hídrica

Contenido

- Contexto global y local del uso del agua
- Fase Conceptual Quimi-Irrigación
- Proceso de adopción e implementación de la tecnología
- Experiencias obtenidas(estudio de caso)
- Limitantes y beneficios

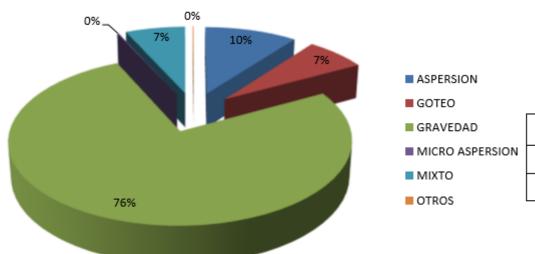
Contexto Global

• El agua en el planeta tierra

Fuente: FAO

Contexto Global

Consumo global de agua


Fuente: FAO

Contexto Local

Métodos de riego y uso de agua

SUPERFICIE DE RIEGO (HA) SEGÚN SISTEMA DE RIEGO TEMPORADA 2011 - 2012

TEMPORADA DE RIEGO 2011 - 2012

SUPERFICIE BAJO RIEGO (HA) SEGÚN TIPO DE SISTEMA DE RIEGO								
ASPERSIÓN	GOTEO	GRAVEDAD	MICRO ASPERSIÓN	MIXTO	OTROS	TOTAL		
1,622.32	1,068.67	12,006.66	21.17	1,047.78	15.7	15,782.30		

FUENTE: SINGAR / DGFCR / MAG

Riego en Caña de Azúcar

Ingenio	Ingenios			Productores			Total		
	Sin riego	Con riego	Total	Sin riego	Con riego	Total	Sin riego	Con riego	Total
El Angel	76	2,200	2,276	13,592	1,172	14,764	13,668	3,372	17,040
Chaparrastique	1,459	3,080	4,539	6,356	3,238	9,594	7,815	6,317	14,133
Central Izalco	3,031	6,322	9,352	5,467	5,183	10,650	8,497	11,505	20,002
La Cabaña	603	280	883	9,009	1,710	10,719	9,611	1,990	11,602
La Magdalena	610	19	629	4,503	56	4,559	5,113	75	5,188
Jiboa	1,803	-	1,803	8,256	356	8,611	10,059	356	10,415
Total	7,582	11,901	19,483	47,182	11,714	58,896	54,764	23,615	78,379

Fuente: AAES, elaboración DATAGRO

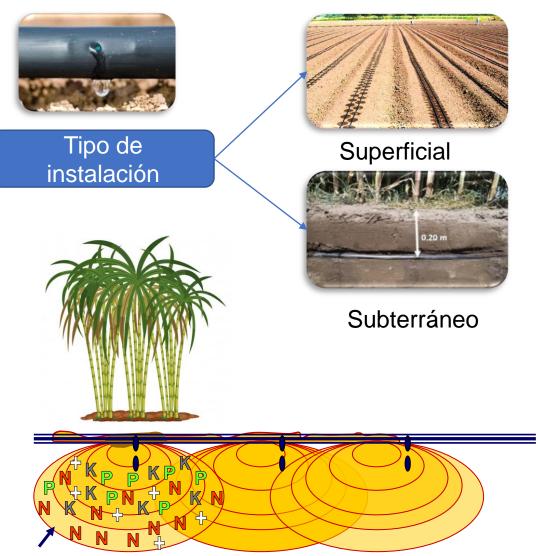
Marco Conceptual Métodos Riego Utilizados y su eficiencia

Gravedad

Consiste en conducir una corriente de agua desde una fuente abastecedora hacia los campos y aplicarla directamente a la superficie del suelo por gravedad, cubriendo total o parcialmente el suelo

Aspersión

El riego por aspersión es una modalidad de riego mediante la cual el agua llega a las plantas en forma de "lluvia" localizada a través de un dispositivo emisor



Quimi Irrigación

Proceso mediante el cual se aplica agua en combinación con cualquier sustancia química soluble en ella, en proporción controlada directamente en la zona radicular de la planta, a través de sistemas de riego presurizado

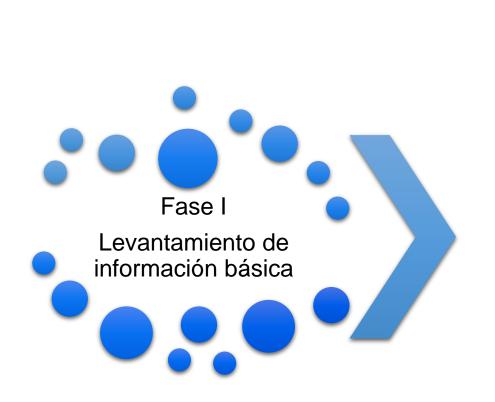
Solución nutritiva

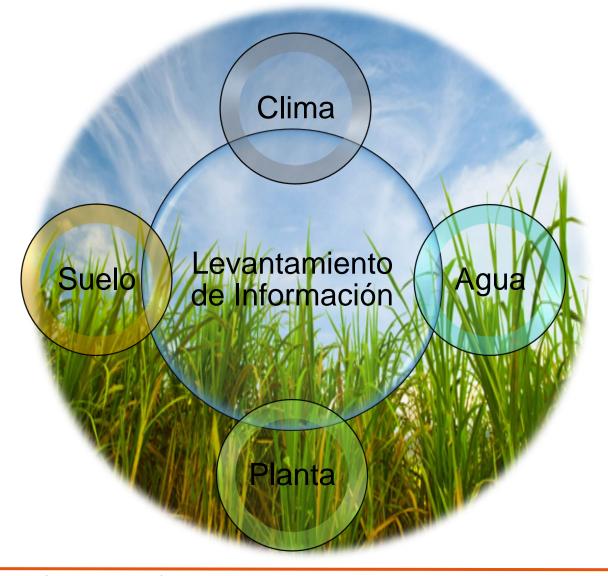
Proceso de adopción e implementación de la Tecnología

Fase II

Diseño de la propuesta técnica de riego

Fase III


Diseño de la propuesta de fertilización


- Levantamiento topográfico
- Información de Suelo
- Información de Clima
- Información de fuente de agua.

- Diseño Agronómico
- Diseño Geométrico
- Diseño Hidráulico

- Análisis de Suelo
- Análisis de calidad de agua
- Requerimiento del cultivo
- Producción a obtener

Proceso de implementación de proyectos de riego por goteo

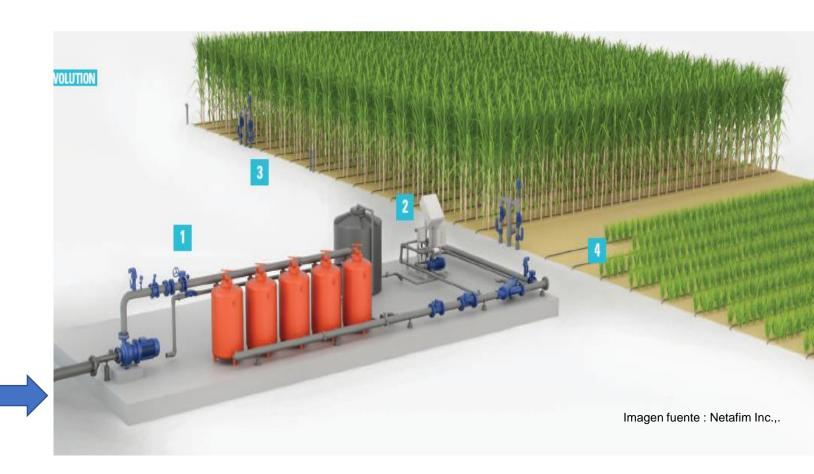
Diseño Agronómico

Busca garantizar el suministro de agua para abastecer las necesidades hídricas del cultivo (en la condición de mayor demanda), con una adecuada eficiencia de aplicación.

Fase II
Diseño de la propuesta técnica

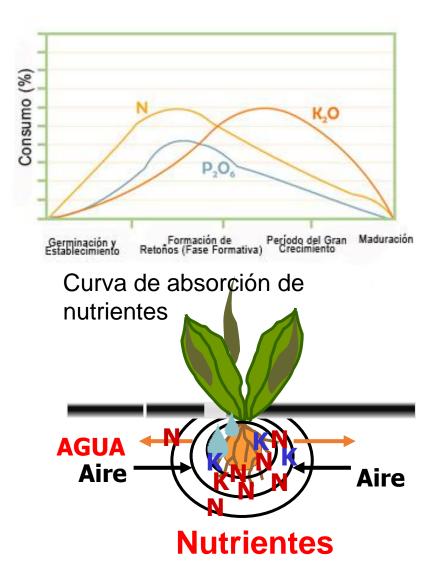
Diseño Geométrico

Comprende la distribución espacial de tuberías principales, secundarias y terciarias en campo


Diseño Hidráulico

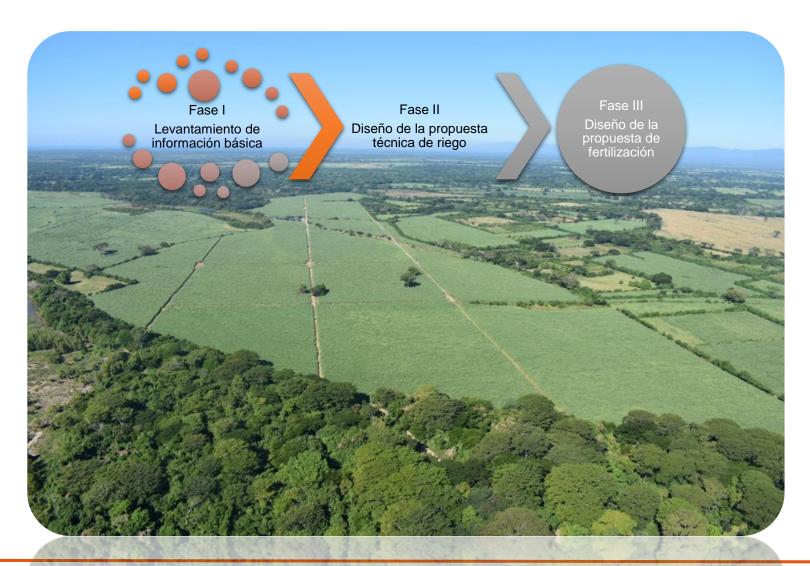
Busca asegurar el diseño óptimo de la red, con el fin de cumplir con los requerimientos resultantes del diseño agronómico.

Principales componentes de un sistema de riego por goteo

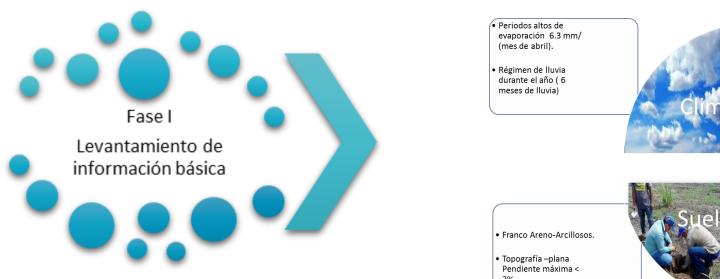

- 1. Equipo de bombeo y filtrado
- 2. Equipo de inyección
- Red de tuberías de conducción principal y secundarias
- Válvulas de control y tubería porta goteros (laterales)

Fase III

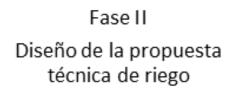
Diseño e
implementación
de la propuesta
de fertilización

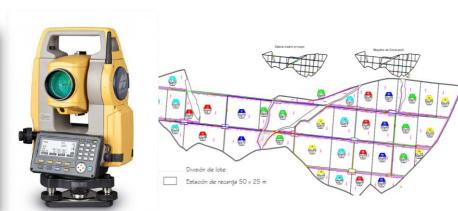


Soluciones



Experiencias obtenidas (estudio de caso)

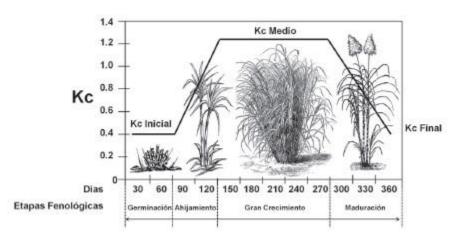

- Área: 104 Has.
- Cultivo: Caña de Azúcar
- Fuente de Agua: Superficial (Río)
- Método de riego: Goteo



•Análisis de calidad de agua

•CE •Na

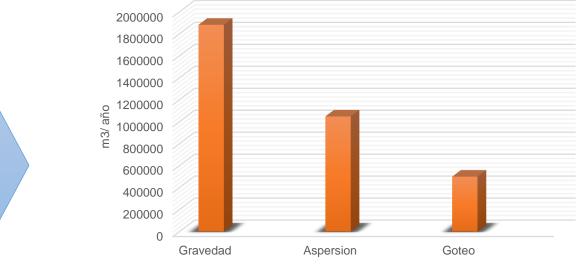
•RAS



Manejo de aplicación de agua

Lamina de reposición= Evaporación(mm/día) *KC

Sistemas de Quimi- irrigación mediante el uso de goteo y su influencia en el consumo de agua


Estudio de caso El Salvador

Cantidad de m3 de agua / año

Cultivo: Caña de azúcar

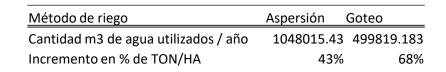
Área: 104 Ha

Método de riego	o de riego Graveda		Asper	rsión	Goteo		
Cantidad m3 / año	1882	1882348		1048015.429		499819.1832	
Eficiencia %	50'	50%		70%		95%	
Lamina (mm/ año)	904.	904.975		705.395		456.5656	
Diferencia	Aspersión	Goteo	Gravedad	Goteo	Gravedad	Aspersión	
	80%	132%	-44%	110%	-73 447%	-52%	

20.0%

10.0%

0.0%


Incremento de la producción y uso de agua

Estudio de caso El Salvador

Cantidad m3 de agua utilizados / año

Incremento en % de TON/HA

400000

200000

Principales limitantes

- Costos de inversión inicial moderados y altos.
- Mantenimiento constante del sistema de filtrados y goteros.

- Riesgos de obstrucción y taponamiento.
- Dificultas de labranza en sistemas subterráneos.
- Acumulación de sales en suelo sin un adecuado manejo.
- Difícil control visual en sistemas subterráneos

Beneficios de Quimi-irrigación

- Mayor infiltración y almacenamiento de agua en suelos más secos y menos encostrados.
- Reducción del 52 % del volumen de agua aplicado (especialmente en zonas áridas y frente a sistemas de riego que mojan toda la superficie del suelo).
- Independencia de las condiciones meteorológicas (viento y elevadas temperaturas) para el riego, al contrario que en riego por aspersión.
- Mejor manejo de fertilizantes y pesticidas que se inyectan al sistema localizándose en el lugar y momento más adecuados de acuerdo a la etapa fenológica del cultivo en función de las curvas de absorción de nutrientes, lo que aumenta su eficacia y reduce las pérdidas por lavado (especialmente en el caso del nitrógeno).
- Posibilidad de corregir rápidamente cualquier deficiencia nutritiva del cultivo.
- Incremento sustancial de la producción con respecto la no utilización de un sistema de riego localizado

Somos más que azúcar

AZÚCAR • ENERGÍA • INNOVACIÓN AGRÍCOLA • INMOBILIARIA